Proxy Config.yaml
Set model list, api_base
, api_key
, temperature
& proxy server settings (master-key
) on the config.yaml.
Param Name | Description |
---|---|
model_list | List of supported models on the server, with model-specific configs |
router_settings | litellm Router settings, example routing_strategy="least-busy" see all |
litellm_settings | litellm Module settings, example litellm.drop_params=True , litellm.set_verbose=True , litellm.api_base , litellm.cache see all |
general_settings | Server settings, example setting master_key: sk-my_special_key |
environment_variables | Environment Variables example, REDIS_HOST , REDIS_PORT |
Complete List: Check the Swagger UI docs on <your-proxy-url>/#/config.yaml
(e.g. http://0.0.0.0:4000/#/config.yaml), for everything you can pass in the config.yaml.
Quick Start
Set a model alias for your deployments.
In the config.yaml
the model_name parameter is the user-facing name to use for your deployment.
In the config below:
model_name
: the name to pass TO litellm from the external clientlitellm_params.model
: the model string passed to the litellm.completion() function
E.g.:
model=vllm-models
will route toopenai/facebook/opt-125m
.model=gpt-3.5-turbo
will load balance betweenazure/gpt-turbo-small-eu
andazure/gpt-turbo-small-ca
model_list:
- model_name: gpt-3.5-turbo ### RECEIVED MODEL NAME ###
litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
model: azure/gpt-turbo-small-eu ### MODEL NAME sent to `litellm.completion()` ###
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
- model_name: bedrock-claude-v1
litellm_params:
model: bedrock/anthropic.claude-instant-v1
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_CA"
rpm: 6
- model_name: anthropic-claude
litellm_params:
model: bedrock/anthropic.claude-instant-v1
### [OPTIONAL] SET AWS REGION ###
aws_region_name: us-east-1
- model_name: vllm-models
litellm_params:
model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:4000
rpm: 1440
model_info:
version: 2
litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
drop_params: True
success_callback: ["langfuse"] # OPTIONAL - if you want to start sending LLM Logs to Langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your env
general_settings:
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
alerting: ["slack"] # [OPTIONAL] If you want Slack Alerts for Hanging LLM requests, Slow llm responses, Budget Alerts. Make sure to set `SLACK_WEBHOOK_URL` in your env
For more provider-specific info, go here
Step 2: Start Proxy with config
$ litellm --config /path/to/config.yaml
Run with --detailed_debug
if you need detailed debug logs
$ litellm --config /path/to/config.yaml --detailed_debug
Using Proxy - Curl Request, OpenAI Package, Langchain, Langchain JS
Calling a model group
- Curl Request
- Curl Request: Bedrock
- OpenAI v1.0.0+
- Langchain Python
Sends request to model where model_name=gpt-3.5-turbo
on config.yaml.
If multiple with model_name=gpt-3.5-turbo
does Load Balancing
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
Sends this request to model where model_name=bedrock-claude-v1
on config.yaml
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-claude-v1",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
# Sends this request to model where `model_name=bedrock-claude-v1` on config.yaml
response = client.chat.completions.create(model="bedrock-claude-v1", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai base to the proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
response = chat(messages)
print(response)
# Sends request to model where `model_name=bedrock-claude-v1` on config.yaml.
claude_chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai base to the proxy
model = "bedrock-claude-v1",
temperature=0.1
)
response = claude_chat(messages)
print(response)
Save Model-specific params (API Base, Keys, Temperature, Max Tokens, Organization, Headers etc.)
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
Step 1: Create a config.yaml
file
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: eyJ0eXAiOiJ
seed: 12
max_tokens: 20
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: sk-123
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
temperature: 0.2
- model_name: openai-gpt-3.5
litellm_params:
model: openai/gpt-3.5-turbo
extra_headers: {"AI-Resource Group": "ishaan-resource"}
api_key: sk-123
organization: org-ikDc4ex8NB
temperature: 0.2
- model_name: mistral-7b
litellm_params:
model: ollama/mistral
api_base: your_ollama_api_base
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Multiple OpenAI Organizations
Add all openai models across all OpenAI organizations with just 1 model definition
- model_name: *
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
organization:
- org-1
- org-2
- org-3
LiteLLM will automatically create separate deployments for each org.
Confirm this via
curl --location 'http://0.0.0.0:4000/v1/model/info' \
--header 'Authorization: Bearer ${LITELLM_KEY}' \
--data ''
Load Balancing
For more on this, go to this page
Use this to call multiple instances of the same model and configure things like routing strategy.
For optimal performance:
- Set
tpm/rpm
per model deployment. Weighted picks are then based on the established tpm/rpm. - Select your optimal routing strategy in
router_settings:routing_strategy
.
LiteLLM supports
["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"`
When tpm/rpm
is set + routing_strategy==simple-shuffle
litellm will use a weighted pick based on set tpm/rpm. In our load tests setting tpm/rpm for all deployments + routing_strategy==simple-shuffle
maximized throughput
- When using multiple LiteLLM Servers / Kubernetes set redis settings
router_settings:redis_host
etc
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
rpm: 60 # Optional[int]: When rpm/tpm set - litellm uses weighted pick for load balancing. rpm = Rate limit for this deployment: in requests per minute (rpm).
tpm: 1000 # Optional[int]: tpm = Tokens Per Minute
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
rpm: 600
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
rpm: 60000
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
rpm: 200
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
rpm: 100
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
router_settings: # router_settings are optional
routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
num_retries: 2
timeout: 30 # 30 seconds
redis_host: <your redis host> # set this when using multiple litellm proxy deployments, load balancing state stored in redis
redis_password: <your redis password>
redis_port: 1992
You can view your cost once you set up Virtual keys or custom_callbacks
Load API Keys
Load API Keys from Environment
If you have secrets saved in your environment, and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.
os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY
s/o to @David Manouchehri for helping with this.
Load API Keys from Azure Vault
- Install Proxy dependencies
$ pip install 'litellm[proxy]' 'litellm[extra_proxy]'
- Save Azure details in your environment
export["AZURE_CLIENT_ID"]="your-azure-app-client-id"
export["AZURE_CLIENT_SECRET"]="your-azure-app-client-secret"
export["AZURE_TENANT_ID"]="your-azure-tenant-id"
export["AZURE_KEY_VAULT_URI"]="your-azure-key-vault-uri"
- Add to proxy config.yaml
model_list:
- model_name: "my-azure-models" # model alias
litellm_params:
model: "azure/<your-deployment-name>"
api_key: "os.environ/AZURE-API-KEY" # reads from key vault - get_secret("AZURE_API_KEY")
api_base: "os.environ/AZURE-API-BASE" # reads from key vault - get_secret("AZURE_API_BASE")
general_settings:
use_azure_key_vault: True
You can now test this by starting your proxy:
litellm --config /path/to/config.yaml
Set Custom Prompt Templates
LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml
:
Step 1: Save your prompt template in a config.yaml
# Model-specific parameters
model_list:
- model_name: mistral-7b # model alias
litellm_params: # actual params for litellm.completion()
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
api_base: "<your-api-base>"
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
initial_prompt_value: "\n"
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
final_prompt_value: "\n"
bos_token: "<s>"
eos_token: "</s>"
max_tokens: 4096
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Setting Embedding Models
See supported Embedding Providers & Models here
Use Sagemaker, Bedrock, Azure, OpenAI, XInference
Create Config.yaml
- Bedrock Completion/Chat
- Sagemaker, Bedrock Embeddings
- Hugging Face Embeddings
- Azure OpenAI Embeddings
- OpenAI Embeddings
- XInference
- OpenAI Compatible Embeddings
model_list:
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-west-2"
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-east-2"
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-east-1"
Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:
model_list:
- model_name: sagemaker-embeddings
litellm_params:
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
- model_name: amazon-embeddings
litellm_params:
model: "bedrock/amazon.titan-embed-text-v1"
- model_name: azure-embeddings
litellm_params:
model: "azure/azure-embedding-model"
api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
api_version: "2023-07-01-preview"
general_settings:
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
model_list:
- model_name: deployed-codebert-base
litellm_params:
# send request to deployed hugging face inference endpoint
model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
api_key: hf_LdS # api key for hugging face inference endpoint
api_base: https://uysneno1wv2wd4lw.us-east-1.aws.endpoints.huggingface.cloud # your hf inference endpoint
- model_name: codebert-base
litellm_params:
# no api_base set, sends request to hugging face free inference api https://api-inference.huggingface.co/models/
model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
api_key: hf_LdS # api key for hugging face
model_list:
- model_name: azure-embedding-model # model group
litellm_params:
model: azure/azure-embedding-model # model name for litellm.embedding(model=azure/azure-embedding-model) call
api_base: your-azure-api-base
api_key: your-api-key
api_version: 2023-07-01-preview
model_list:
- model_name: text-embedding-ada-002 # model group
litellm_params:
model: text-embedding-ada-002 # model name for litellm.embedding(model=text-embedding-ada-002)
api_key: your-api-key-1
- model_name: text-embedding-ada-002
litellm_params:
model: text-embedding-ada-002
api_key: your-api-key-2
https://docs.litellm.ai/docs/providers/xinference
Note add xinference/
prefix to litellm_params
: model
so litellm knows to route to OpenAI
model_list:
- model_name: embedding-model # model group
litellm_params:
model: xinference/bge-base-en # model name for litellm.embedding(model=xinference/bge-base-en)
api_base: http://0.0.0.0:9997/v1
Use this for calling /embedding endpoints on OpenAI Compatible Servers.
Note add openai/
prefix to litellm_params
: model
so litellm knows to route to OpenAI
model_list:
- model_name: text-embedding-ada-002 # model group
litellm_params:
model: openai/<your-model-name> # model name for litellm.embedding(model=text-embedding-ada-002)
api_base: <model-api-base>
Start Proxy
litellm --config config.yaml
Make Request
Sends Request to bedrock-cohere
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-cohere",
"messages": [
{
"role": "user",
"content": "gm"
}
]
}'
Disable Swagger UI
To disable the Swagger docs from the base url, set
NO_DOCS="True"
in your environment, and restart the proxy.
Configure DB Pool Limits + Connection Timeouts
general_settings:
database_connection_pool_limit: 100 # sets connection pool for prisma client to postgres db at 100
database_connection_timeout: 60 # sets a 60s timeout for any connection call to the db
All settings
{
"environment_variables": {},
"model_list": [
{
"model_name": "string",
"litellm_params": {},
"model_info": {
"id": "string",
"mode": "embedding",
"input_cost_per_token": 0,
"output_cost_per_token": 0,
"max_tokens": 2048,
"base_model": "gpt-4-1106-preview",
"additionalProp1": {}
}
}
],
"litellm_settings": {}, # ALL (https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py)
"general_settings": {
"completion_model": "string",
"disable_spend_logs": "boolean", # turn off writing each transaction to the db
"disable_master_key_return": "boolean", # turn off returning master key on UI (checked on '/user/info' endpoint)
"disable_reset_budget": "boolean", # turn off reset budget scheduled task
"enable_jwt_auth": "boolean", # allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims
"enforce_user_param": "boolean", # requires all openai endpoint requests to have a 'user' param
"allowed_routes": "list", # list of allowed proxy API routes - a user can access. (currently JWT-Auth only)
"key_management_system": "google_kms", # either google_kms or azure_kms
"master_key": "string",
"database_url": "string",
"database_connection_pool_limit": 0, # default 100
"database_connection_timeout": 0, # default 60s
"database_type": "dynamo_db",
"database_args": {
"billing_mode": "PROVISIONED_THROUGHPUT",
"read_capacity_units": 0,
"write_capacity_units": 0,
"ssl_verify": true,
"region_name": "string",
"user_table_name": "LiteLLM_UserTable",
"key_table_name": "LiteLLM_VerificationToken",
"config_table_name": "LiteLLM_Config",
"spend_table_name": "LiteLLM_SpendLogs"
},
"otel": true,
"custom_auth": "string",
"max_parallel_requests": 0,
"infer_model_from_keys": true,
"background_health_checks": true,
"health_check_interval": 300,
"alerting": [
"string"
],
"alerting_threshold": 0
}
}